
International Journal of Theoretical Physics, Vol. 32, No. 6, 1993 

Energy-Momentum Complex of Gravitational Field in 
the Palatini Formalism 
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It is shown that Murphy's energy-momentum complex of the gravitational field, 
derived from the Hilbert Lagrangian by use of the Palatini formalism, is identical 
to the complex derived from the same Lagrangian in a standard way by Mitskievic. 
The explicitly tensorial formulation of conservation laws in general relativity is 
effectively used and some properties of the complex in question are discussed 
in connection with Murphy's article. 

1. I N T R O D U C T I O N  

M u r p h y  recently p roposed  (Murphy ,  1990) to define the energy- 
m o m e n t u m  complex  of  the gravitational field as 

2 . - (O~G/  OF ~ , ~ ) F  ~ = , . -  a ~ c  (1) 

where 

~ o  = a g ~ R ~  = a x / ~  R = ~ Lo (2) 

g"~ = ~ g"~, a = ~6~', and the Ricci tensor  R,~ is expressed with the help 
o f  Christottel  symbols as 

a a p ,~ p c~ 
R ~  = F ~ , ~ -  F~,~ + F ~ F  ~ - F ~ F ~  (3) 

The expression (1) is the canonical  ene rgy-momentum complex of  a gravita- 
t ional field in the f ramework  of  the Palatini formalism, where the Hilbert 
invariant  Lagrangian o f  the gravitational field (2) is expressed as 
2G(g,  F, OF) instead o f  the s tandard  ~o (g ,  0g, 02g). As is well known,  we 
obtain in this case not  only the Einstein equat ions 

~ = ~ T~ = - 2 a - , / ~ ( R ~ - � 8 9  (4) 
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but also the relations for the Levi-Civita connection 

a 1 a c t  F , ~  = ~g (g~ ,~  + g~ ,~  - g~,~,~) (5) 

as a consequence of the variational principle. 
The fact that the use of the Palatini formalism does not change the 

physical content of the theory expressed by the relations (4), (5) represents 
a nontrivial property of  the Hilbert Lagrangian. Now, the question arises 
whether this use of the Palatini formalism could lead to an essentially 
different formulation of  the conservation laws. It is shown in Murphy's 
article that the expressions (1) differ from those obtained from the Einstein 
Lagrangian reduced on second derivatives of the metric. But it would be 
more natural to compare them with the expressions derived from the Hilbert 
Lagrangian (Mitskievic, 1961), namely 

,~ , = [ (052o/  Og~e,~) - (052G/ Og~e,~),~ ]g~e, . + (05dG/ Og~,~)g~e,~ ,  . - 52c8,, 
(6) 

Our principal aim will be the demonstration of the identity of St~ from 
(1) and from (6) after substitution of (5) into (1). Because the direct 
verification would be very tedious, we shall present two more accessible 
ways of  this proof. Then we shall discuss some properties of the complex 
in question concerned in Murphy's paper, with regard to its identity with 
Mitskievic's complex. 

2. PROOFS OF IDENTITY OF MURPHY AND 
MITSKIEVIC COMPLEXES 

The canonical complex (6)--like the Einstein complex--can be derived 
from a superpotential as follows (Mitskievic, 1969): 

,eft ~ = n~.~ - ~ .  (7) 

where ~ is the energy-momentum complex of matter given by (4), and 

v o -  o - ~  [ l , p  T~  cr  c r p  r ~  ~, 1I~ = -1 I , ,  = c~tg l o ~ - g  lp~) (8) 

Considering (2) and (4), we conclude that the identity of ,~,  " from (1) and 
(7) can be derived under the supposition of the validity of the relation 

= c~ at,,~-t- (9) 

which can be verified by direct calculation using (3), (5), and (8). Neverthe- 
less this calculation is still rather tedious. Therefore we give here another 
proof  based on a manifestly covariant expression of the conservation laws 
which was developed in Novotn3) (1984, 1989). 
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Our starting point is the "first variational formula" for the Lagrangian 
(2) (Trautman, 1964) 

v 52 ;~ gg~o - 6 ~ , ~ : 0  (10) 

where 52~ t3 are Euler-Lagrange expressions corresponding to the Lagrangian 
(2) with respect to g~a and 

6 ~  ~ : - ~ . ~ 6 x  ~ - (0,~o/0r~v,~)gr~ (11) 

{2g~ = 8g ,~  - g~,o-6x  ~ (12) 
- -  or o~ ex o -  
8 F  ~ = 8 F  t ~ -  F t3v,,~6x (13) 

Here 8g~t3 and 6F~v are the variations of appropriate variables with respect 
to an infinitesimal transformation of the space-time manifold, which is given 
by the vector field 8x  ~. Let us emphasize that in (10) we already suppose 
the validity of relations (5) and consequently we omit the Euler-Lagrange 
expressions with respect to the F~v. 

A standard approach to the conservation laws begins by putting 

3x  r = e ( " ( x  t3) (14) 

where e is a parameter, and ~ is the generator of a one-parameter group 
of transformations. We slightly modify this in order to obtain related 
equations in a manifestly covariant form. Therefore after expressing 

gg~r = -e(~:%g~ + ~i~ g ~  - g~,~;~'~) (15) 

we shall use the fact that the Lie variation 3g~ is a tensor field and we 
shall write it with the help of a locally geodetic system as 

6g~,3 = -2e~:(~;~) (16) 

(parentheses mean symmetrization of indices). We apply a similar procedure 
- -  ee also to the 6Ft3 v. Because in the expression 

- -  cr c r  t~  0r Cr Cr O- C~ t~ t ;  8F~v= e ( F ~ , ~ - F ~ : , v - F ~ : ~ - ~ z , ~ - F ~ v , , ~  ) (17) 

the first derivatives of F~v and the second derivatives of ~:~ are included, 
we must express (17) in the normal Riemannian coordinates (Misner et aL, 

1973), where 
2 or Ft3u,~ = - ~ R ( ~ >  (18) 

oe L . o e  _ t . .  2_ D a ,~  o -  

~,~ = s ;e ;v-  3*-!~)vs (19) 

Using also the well-known commutation relations, we obtain 
- -  ce ce 2 ~ ~ o -  6F~v = -e[~;(~;v)+ - R{r ] ~( R<~v),. (20) 

Remember that no term with first covariant derivatives of ~ is contained 
in (20). 
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N o w  we subtract  (16) and (20) f rom (10) and divide by ev/-Z-g in order  
to obtain a vector field instead o f  a density. We also use [compare  (4)] 

9~t3 _ 1T~& _/Z-~. (21) G - - 2  a v - - g  

and we express the resulting vector  field with the help o f  a locally geodetic  
system. In  this way we have 

T ~ L ;  ~ + t~,. = 0 (22) 

where 

e~--g t ~ = 6 ~  ~ (23) 
In the first term o f  (22) we apply  a step leading to the second theorem o f  
Noether ,  i.e., we write 

T~r = ( T~r  - T ~  ~:~ (24) 

and as a consequence  o f  the arbitrariness o f  s~ we obtain the strong 
conservat ion law 

s~=0 (25) 

where 

S ~ = T ~ : ~  + t v (26) 

The identical character  o f  the strong law (25) is explicitly expressed by the 
in t roduct ion o f  the superpotent ial  

S ~ =  U ~ (27) ;o- 

where U ~t~ are componen ts  o f  an ant isymmetr ic  tensor field. These com- 
ponents  can be found  by a modif icat ion o f  the method  used by Mitskievic 
(Mitskievic, 1969; see also Novotn3~, 1984, 1989). Let us write 

S v = B~sc ~ + B~sc~ ;  ~ + B ~ : ~ ; ( t ~ ; ~ )  (28) 

where B ~ ,  B ~ ,  B "t3r~ = B ~rt~" are tensor fields. Then 

U . , ~ = _ U  ,,~ ~ r~ .... ~ 2 o ~ h e  4 ~ r ~ ] ~  (29) 
= k - - * "  - -  3 * ~  ;/3 ] S o e  3 *-s b oL ;/3 

is a superpotent ial ;  square brackets mean ant isymmetr izat ion o f  indices. 
This can be easily p roved  as a consequence  o f  identities fol lowing f rom 
(25) and f rom the independence  o f  ~:,, s~,;~, ~,;(p;~)- 

It remains to determine B "~,  B ~ E ' ~  in (28). It follows f rom (26), 
(23), (11), and (20) that 

B ~ = 0  (30) 
a ,~a _ g~ ,~gP~)  B '~t~[ ~'~] = ( 0 5 2 ~ / O F ~ [ , . , , ~ l ) g  = ~oe (g '~"g~ '~  (31) 

BTfl[~] = 0 (32) 
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and consequently 

U ~ = -2a~  :E";~] (33) 

The superpotential (33) has a fundamental meaning for the conserva- 
tion law theory. For example, Murphy's energy-momentum complex ~ 
can be derived from it with the help of (7), where 

W 7  - -  Vt7 lI~ = ~  U (~(~)) (34) 

and 

~ = a~ (3s) 

represents four generating fields of a natural basis in the given system of 
space-time coordinates. 

Finally, we can perform analogous calculations for the Lagrange func- 
tion (1) expressed as a function of metrics and its first and second derivatives. 
In this case we have instead of (11) 

6 ~  = - s  ~ + [ (O~,c/ Og~t~.~,~),~ - (O~.c/ Og.t3,.) ] g g ~  

- (Os162 (36) 

In a locally geodetic system, the middle term in (35) vanishes and 

gg,~,,~ = -2sc~.i3);~ (37) 

Using this fact and the commutation relations, we obtain an expression of 
the type (27) for S", where 

B ~'~ = 0  (38) 
- 3c~ r - " ~ " ~ "  a (39) B~13["r = OLo/Og~,[,,,~lr - 4 \ , 5  ,S 25 ,?5 ] 

It is the same as (30), (31) and therefore we obtain also the same superpoten- 
tial (33), (34) and the same energy-momentum complex ,~'" /x" 

3. SOME CONSEQUENCES 

According to the previous considerations, all conclusions made with 
respect to the Mitskievic complex are valid also for the complex proposed 
by Murphy. Let us remember that the best clue to its properties is provided 
by the superpotential (33), resp. (34). It is the well-known Komar super- 
potential (Komar, 1959) divided by the factor 2. 

First let us calculate the density of the energy current in vacuum related 
to the generating field C'. It is 

,~'o = ~ - g  U;]7 = -2c~---ff  so},, ~;'] (40) 

902/32/6-11 
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where ~:~ is the timelike field of the natural basis. It can be easily seen that 
(40) vanishes in the case of the Killing field, where 

~:(~;~) = 0 (41) 

That is, it vanishes in the static gravitational field in vacuum. But recall 
that it does not mean the zero value of the total mass-energy of a static 
insular system. This quantity can be calculated with the help of the super- 
potential as the zero component of the total four-momentum 

; 1 ~  1 ~  oi M (42) e0= = lt0a i= T 

(in the last integral the summation includes the space indices only). So the 
energy is equal to one-half of the Schwarzschild mass (putting c =  1). 
Therefore we cannot agree with Murphy's statement that "the mass of an 
isolated particle vanishes." In fact, this mass is given by (42). Not even the 
energy flux from an isolated system diverges. As shown by Novotn3~ 
and Horsk2~ (1983), the "quadruple formula" can be derived also for the 
Mitskievic complex, only the loss of energy by radiation is half in' com- 
parison with the loss calculated with the help of the Einstein or Landau- 
Lifshitz complex. But because also the total energy (41) is half, this difference 
has no physically observable effect and it can be simply treated as a different 
definition of energy. 

Let us recall that the Mitskievic and consequently also the Murphy 
formulation suffer essential difficulty: the four-momenta calculated on the 
hypersurfaces of relative simultaneity connected by the Lorentz transforma- 
tion are generally not the same, but 

P '~-  P~ = - v k  ~ 1I~' d(r, (43) 

holds, where Vk is (three-dimensional) velocity of an asymptotically inertial 
system E' with respect to another such system E. In other words, P~ does 
not represent a vector with respect to the Lorentz transformation if 

1I~ ~ do'~ # 0. But this is the case for the Mitskievic-Murphy complex. See 
also the discussion on the differential and integral conservation laws in 
general relativity (M011er, 1961; Kovacs, 1985; Novotn2~, 1987), suggesting 
that, unfortunately, success in the localization of gravitational conserved 
quantities is paid for by defects in their integral behavior. 

So we can conclude that the use of the Palatini formalism in the theory 
of conservation laws is remarkable from the point of view of its brevity and 
simplicity, but it does not lead to an essentially new complex of energy- 
momentum. Therefore it probably would not throw any new light on old 
problems. 
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